Women’s attractiveness judgments of self-resembling faces change across the menstrual cycle

Lisa M. DeBruine a,∗ Benedict C. Jones b David I. Perrett a

a University of St Andrews, School of Psychology, St Andrews, Scotland, KY16 9AJ
b University of Aberdeen, School of Psychology, Aberdeen, Scotland, AB24 2UB

Abstract

Two lines of reasoning predict that women’s preferences for people exhibiting cues to kinship will be lower in the follicular phase than in the luteal phase of the menstrual cycle. Women may avoid kinship cues during the follicular phase when they are most fertile due to the costs of inbreeding. Alternatively, women may seek kinship cues during the luteal phase as a byproduct of the benefits of associating with kin during pregnancy, which is also characterized by high progesterone. We find that preferences for facial resemblance, a putative kinship cue, follow this predicted pattern and are positively correlated with estimated progesterone levels based on cycle day. Neither estimates estrogen levels nor conception risk predicted preferences for self-resemblance and the cyclic shift was was stronger for preferences for female faces than male faces. These findings lead to the possibility that this cyclic change in preference for self-resemblance may be a byproduct of a hormonal mechanism for increasing affiliative behavior toward kin during pregnancy, rather than a mechanism for preventing inbreeding during fertile periods.

Key words: menstrual cycle, kin recognition, face preferences, progesterone, estrogen, conception risk

∗ Corresponding author.

Email addresses: lisa@debruine.info (Lisa M. DeBruine), ben.jones@abdn.ac.uk (Benedict C. Jones), dp@st-andrews.ac.uk (David I. Perrett).

1 The authors wish to thank M. MacKenzie and L. Ferrier for assistance with participants, M. Daly and M. Wilson for helpful comments, and B. Tiddeman for his computer graphics expertise. Financial support for this research was provided by grants from the National Science Foundation to L. DeBruine, from the Social...
1 INTRODUCTION

Women’s preferences for masculine male faces (Penton-Voak et al., 1999; Johnston, Hagel, Franklin, Fink and Grammer, 2001), faces with cues associated with apparent health (Jones et al., 2004), the body odour of symmetric men (Gangestad and Thornhill, 1998), the body odour of men with immunocompetent genotypes (Thornhill et al., 2003), and masculine behavioral displays (Gangestad, et al., 2004) have all been shown to change across the menstrual cycle. While traits such as masculinity and symmetry that are thought to be associated with indirect benefits (i.e. those that reflect good genetic quality) are preferred in the follicular phase when women are most fertile, traits such as current health and diverse genes for immune system strength that are thought to be associated with direct benefits (i.e. non-heritable benefits) are preferred in the luteal phase and also during pregnancy (Jones et al., 2004).

Cues of kinship can signal both increased direct benefits in the form of altruism from family members, and decreased indirect benefits in the form of inbreeding depression. Major histocompatibility complex (MHC) similarity is one potential cue of kinship. Manning, Wakeland and Potts (1992) reported that pregnant female mice prefer to nest with others who share their MHC odour signature. Women who use oral contraceptives, which increase progesterone to levels similar to pregnancy and the luteal phase, have been shown to prefer MHC similarity more than women with natural cycles (Wedekind, Seebeck, Bettens and Paepke, 1995). Results regarding MHC preferences suggest that other cues of kinship, such as facial resemblance, may also be preferred when women’s hormonal profile is similar to that of pregnancy. In addition, the costs of inbreeding are highest when women are most fertile, which could cause preferences for cues of kinship to be lowest in the follicular phase. The genetic costs of inbreeding (e.g. greater incidence of early death of children) in a short-term relationship cannot be offset by the benefits of a long-term relationship with kin (e.g. greater duration of marriage and extended family support for a large family size, Bittles, Grant, Sullivan and Hussain, 2002). Accordingly, both men and women judge self-resembling other-sex faces to be less attractive in the context of a short-term relationship than a long-term relationship (DeBruine, in press).

Most previous studies of cyclic shifts in preferences have compared preferences between high conception risk days and low conception risk days (Penton-Voak et al., 1999; Johnston, Hagel, Franklin, Fink and Grammer, 2001) or have correlated preferences with estimates of conception risk (Gangestad and...
Thornhill, 1998; Thornhill et al., 2003; Gangestad, et al., 2004). Although cyclic changes may function to alter preferences during times of peak fertility, they must be driven by some proximate mechanism such as hormone levels, which may have a different cyclic pattern than fertility.

In the current study, we assessed preferences for self-resemblance, a potential cue of kinship (DeBruine, 2002, 2004b,a, in press), in women at varying points in their menstrual cycles. Progesterone and estrogen levels (Alliende, 2002), and conception risk (Wilcox, Dunson, Weinberg, Trussell and Day Baird, 2001) were estimated for each cycle day from published data. Preferences for male and female self-resembling faces were assessed using faces computer generated from participants’ images. If cyclic changes in preferences for cues of kinship function to increase kin affiliation during pregnancy, preferences for facial resemblance should be greatest in the luteal phase when progesterone levels are highest and should be equally or more pronounced for female faces than for male faces (i.e. unlikely to be stronger for male faces). Alternatively, if cyclic changes in preferences for cues of kinship function to decrease the likelihood of an incestuous mating during fertile periods, preferences for facial resemblance should also be negatively correlated with conception risk and should be equally or more pronounced for male faces than for female faces (i.e. unlikely to be stronger for female faces).

2 METHOD

2.1 Participants

Participants were 74 women between the ages of 17 and 22 ($M = 18.8, SD = 1.0$) who reported no pregnancy or hormonal contraceptive use. None of the women reported having children. Three women were excluded because they reported a current cycle day of 40, 56 and 78 days and thus were likely to be experiencing an abnormal menstrual cycle. The remaining 71 women were divided into three broad ethnic groups for the purposes of face manipulation (12 East Asian, 8 West Asian, 51 European).

For the between groups analysis, women were divided into two groups based on phase of menstrual cycle. Women on days 6-14 were in the late follicular group ($N = 21$) and women on days 17-27 were in the luteal group ($N = 22$). Women on days 15 and 16 were excluded because they cannot be reliably assigned to the late follicular or luteal phases without hormonal assays or information about typical cycle length. These cycle phases were chosen because they differ most in estimated progesterone levels, estrogen levels, and conception risk. All women’s data were used for analyses correlating estimated progesterone,
Fig. 1. Participants’ images (a) were used to transform composite images of young adult women (b), adult women (c), young adult men (d), and adult men (e). Transformation added 50% of a participant’s face shape to the composite faces, but did not alter color information. Participants were grouped by ethic category (i.e. East Asian, West Asian or European) and asked to choose the more attractive of pairs of faces (e.g. 1b vs. 2b).

Estrogen and conception risk with preferences for self-resembling faces.

2.2 Stimuli

Participants viewed stimuli made from four different composite images: young adult men, young adult women, adult men, and adult women of the same ethnic group as each participant. Each composite was formed by averaging the shape, color and texture of 15-50 faces of the same sex, ethnic group (East Asian, West Asian, European), and age group (young adults age 13-20, adults age 25-30). Participants were asked to estimate the age of the faces after each testing block. The average perceived ages (±SD) of the transformed composite faces were similar to the average ages of the faces each of the composites were made from (young adult men, 19.5 ± 2.9; young adult women, 18.9 ± 2.5; adult men 27.2 ± 6.1; adult women 27.3 ± 4.3). Composites were transformed to resemble each participant (Figure 1). The transformation process is described in DeBruine (2004b) and technical aspects of the computer graphic methods are described in Tiddeman, Perrett and Burt (2001). Resemblance was subtle and at debriefing, when asked for guesses as to what the study was about, no participants reported detecting the use of their own face in the stimuli.
2.3 Procedure

The study was run as part of a larger block of experiments, some of which required repeated testing a week apart. Digital images of the participants’ head and shoulders were taken the first week for an unrelated study of facial symmetry and masculinity. These images were used to construct the self-resembling faces.

The testing procedure was identical to that used by DeBruine (2004b). Four testing blocks (young adult female, adult female, young adult male, adult male) were presented in randomized order. In each block, participants viewed all 36 possible paired combinations of 9 images and were instructed to “Choose the more attractive face” by clicking on the face with a computer mouse. The 9 images were made from one of the four composite faces, one transformed to resemble the participant and 8 transformed to resemble 8 other participants, who also viewed the same testing blocks.

Preference for self-resemblance was calculated by subtracting the average number of times that participants chose a particular image as the more attractive of the pair (out of a possible 8) from the number of times that the resembling participant chose that image. Positive scores indicate a preference for the self-resembling face beyond control participants’ preferences for that face.

3 RESULTS

A repeated-measures ANOVA was used to analyze the effects of two within-subject variables (face sex and face age group) and one between-groups variable (late follicular vs. luteal menstrual cycle stage). Analyses were carried out on 21 women in the late follicular phase (days 6-14) and 22 women in the luteal phase (days 17-27). Preferences for self-resemblance were greater in the luteal phase than in the late follicular phase and this effect was greater for female faces than for male faces (Figure 2). Cycle phase had a main effect on preferences for self-resemblance ($F_{1,41} = 5.93, p = .019$) and interacted with face sex ($F_{1,41} = 6.66, p = .014$). No other main effects or interactions were found (all $F_{1,41} < 1.44, p > .23$).

All 71 women were included in an analysis of average preference for self-resemblance by progesterone level, estrogen level and conception risk as estimated by cycle day. Typical progesterone and estrogen levels were taken from Alliende (2002). Conception risk estimates were taken from a study by Wilcox, Dunson, Weinberg, Trussell and Day Baird (2001) reporting the probability of clinical pregnancy with a single act of unprotected intercourse by
Fig. 2. Preferences for self-resemblance were greater in the luteal phase (21 women) than the late follicular phase (22 women). This shift was greater for female faces than for male faces. Error bars represent standard error of the mean.

cycle day. Cycle days ranged from 1 to 33 ($M = 18.7, SD = 8.8$), estimated progesterone levels ranged from 0.37 to 9.36 mmol estrone glucuronide/l/24hr ($M = 3.22, SD = 2.55$), estimated estrogen levels ranged from 0.64 to 7.89 µmol pregnanediol glucuronide/l/24hr ($M = 4.74, SD = 1.79$), and estimated conception risk ranged from 0 to .086 probability of clinical pregnancy per single act of intercourse ($M = .035, SD = 0.03$).

Estimated progesterone levels correlated with preferences for self-resemblance in both young adult and adult female faces, but in neither young adult nor adult male faces (Table 1). Preferences for self-resemblance were not correlated with estimated estrogen levels or conception risk. Thus, the pattern of the self-resemblance preference for female faces across the menstrual cycle was similar to that of progesterone levels.

4 DISCUSSION

Preferences for facial self-resemblance change across the menstrual cycle, being highest in the mid-luteal phase. Cyclic changes are greater for female faces than for male faces, suggesting that the function of these changes is to regulate prosocial or kin-seeking behavior and not to regulate inbreeding. Self-resemblance preferences were correlated with estimated levels of progesterone, but not estimated levels of estrogen or conception risk. This suggests
Fig. 3. The black line represents the 5-day moving average of 71 women’s average preference for self-resemblance in male and female faces by day of menstrual cycle, which follow the same pattern as typical progesterone levels (grey line, taken from Alliende, 2002).

Table 1
Average self-resemblance preference (SEM) and Pearson’s correlations between self-resemblance preference scores and estimated progesterone, estrogen, and conception risk. Self-resemblance preferences were analyzed separately for young adult female, adult female, young adult male, adult male faces and for the average preference score.

<table>
<thead>
<tr>
<th>face type</th>
<th>self-resemblance preference</th>
<th>estimated progesterone</th>
<th>estimated estrogen</th>
<th>conception risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>young female</td>
<td>.372 (.24)</td>
<td>.378*</td>
<td>.068</td>
<td>-.120</td>
</tr>
<tr>
<td>adult female</td>
<td>.205 (.23)</td>
<td>.366*</td>
<td>-.007</td>
<td>-.129</td>
</tr>
<tr>
<td>young male</td>
<td>.268 (.19)</td>
<td>.154</td>
<td>-.059</td>
<td>-.042</td>
</tr>
<tr>
<td>adult male</td>
<td>-.109 (.21)</td>
<td>.084</td>
<td>-.005</td>
<td>.006</td>
</tr>
<tr>
<td>average</td>
<td>.184 (.16)</td>
<td>.350*</td>
<td>.004</td>
<td>-.103</td>
</tr>
</tbody>
</table>

* p < .005 two-tailed

that the functional significance for the cyclic change in self-resemblance preferences may be a byproduct of a hormonal mechanism for increasing affiliative behavior toward kin during pregnancy.

Although the faces of women in the follicular phase are rated as more attractive than the faces of women in the luteal phase (Roberts et al., 2004), this could not contribute to our findings for several reasons. First, the face images of participants used to make the stimuli were taken 1-3 weeks prior
to testing. Second, preferences for self-resembling faces were measured in relation to control participants’ preferences for those same faces (which also controlled for general attractiveness differences between participants). Finally, cyclic changes in own facial attractiveness would have produced preferences in a pattern opposite to that found in the current study. Increased preferences for self-resembling female faces in the luteal phase cannot be explained by the previously reported increase in general attractiveness ratings to female (but not male) faces during days characterized by high estrogen (days 12-21, Fisher, 2004) because of the forced-choice design of the tests.

Interestingly, although there was little evidence for cyclic changes in preferences for self-resembling male faces, preferences for self-resemblance between all four image types were correlated (all $r > .25, p < .05$). This could reflect cyclic changes affecting both male and female faces, or it could be indicative of other individual differences in preferences for self-resemblance.

The women in this study reported the first day of their current menstrual cycle, which did not allow for a more accurate assessment of cycle stage based on counting backwards from the next onset of menses. Women were asked to provide their typical cycle length, but a substantial number of women did not complete this question or gave answers of fewer than 8 days, indicating confusion. In the future, it would be preferable to confirm cycle stage using hormonal analysis (\textit{sensu} Jones et al., 2004). Because directly correlating face preferences with hormone levels would be problematic due to the variation in average hormone levels between women, a within-subject investigation of cyclic changes in preferences for self-resembling faces would be desirable.

The current results add to the increasing evidence that fluctuations in progesterone levels associated with menstrual cycle, pregnancy, and oral contraceptive use influence preferences for facial characteristics. A next step would be to assess preferences for self-resemblance in oral contraceptive users and during pregnancy. Such findings would inform the hypothesis that progesterone-mediated changes in preference for self-resembling faces function to increase affiliative behavior toward kin during pregnancy.

References

